众所周知,二维空间是一个平面,也就是一个有两面的音符。 如果这张纸币上有二维生物,需要从前到后,必须绕过纸币边缘才能到达。 当然,如果它有直接通过笔记的能力。 但是现在我们不想让这个二维生物这么麻烦,所以我们把一端翻转180°(180°的奇数倍也可以),然后把两端粘在一起,就是一个“莫比乌斯环”。 这种具有单面表面的二维环结构是由数学家奥古斯特·莫比乌斯于 1858 年发现的。
我们可以发现,如果将一只蚂蚁放在具有这种结构的纸条上,它可以到达另一边,而无需越过边缘或穿过平面。 而这样的结构可以说是无限循环的,所以现在很多商家都将其视为永恒爱情的象征,纷纷制作了类似结构的“莫比乌斯环”戒指。 这里的莫比乌斯环还是有边的,但是如果我们把两个莫比乌斯环放在一起,它们的边可以是全连通的,所以我们可以得到一个封闭的结构。说到底,其实是一个“克莱因瓶”,可以从里面直接进入,不分内外。
关于莫比乌斯环属于几维空间这一事实存在很多争议,但由于我们可以在三维空间中看到并制造它,因此可以将其视为三维空间的一个表面。 而这样两个莫比乌斯环的叠加,显然增加了“克莱因瓶”的维度,使其只能存在于四维空间之上的世界。